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PRINCIPLES OF MOMENT DISTRIBUTION APPLIED TO STABILITY OF STRUCTURES
COMPOSED OF BARS OR PLATES

By EUGENE E. ~UNDQUIST,ELBRmGE Z. STOWHLL,and ET-AN H. SCHUETTII

SUMMARY

l%e pn”na”ple$ of the Cross method of moment distribution,
uhich hare preciously been applied to the stability of structure8
composed of bars under am-al had, are applied to the ~tability
of structures composed of long plates under lon~”tudinal load.
.4 brief theoretical treatment of the mbject, a8 applied to 8truc-
ture8 compo8ed of either bar8 or plate8, i8 included, together
with an iilu8tratice example for each of these two types of
8hwcture. An appendix presents the derivation of the formula8
for the rariow86ti$nes8e8 and carry-orer factors used in solting
prob[ern8 in the stability of 8hwcture8 composed of long plates.

INTRODUCTION

The usual procedures for cahxdating criticaI buclding
loads for the members of compIex structures are often some-
what invoIved and are not- easiIy reduced to a set of routine
cakulations. llany practical engineers, as a consequence,
do not attempt to crdculate critical buckhg loads.

One approach to the soIution of problems in the stability
of structural members tht is puwly engineering in clwmct w
wd that lends itseIf to simplified calculations is provided by
use of the principles of the Cross method of moment dis-
tribution (reference 1). The theory of moment distribution,
originally devised as a rapid method of stress analysis,
desaibes how the resistance to an external moment, applied
at any joint in a structure composed of bars, is distributed
throughout the structure in accordance with the resistante
of the various joints to rotation. T& original theory of
C&ES was modified by James (reference 2] to talw into
account the possibility of axia~load in the members.

The modified theory of James has already been applied
in reference 3 to the stucly of the st.ability of structures
composed of bars tinder axial Ioad. Because of the funda-
mentd character of the quantities used in the method of
moment distribution and of the formulas associated with
them, it.is possible by suitable definition of the quantities to
apply an analysis exactIy IiIcethat of reference 3 to the study
of the stability of structures composed of plates under
LongitudinalIoad.

The present report gives a genemdized derivation of the
formulas, applicable to both bar and pl~te structures. The
evaluation of various quantitiee for structures composed of
bars was given in reference 3. The corresponding evaIuation

of the quantities for structures composed of plates is given
in an appendix to this report.
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modulus of elasticity
load on structure
rotation of joint
deflection
series stability factor
modified stiffness stabfiity factor

BARS

effective modulus of elasticity for stresses beyond the
eIastic range

moment of inertia of cross section about an axis per-
pendicular to pIane of bending ‘

area of cross section

midiusof gyration (/)~:

length of bar
a.si;l Ioad in bar (absolute value]

P CT2-

( (9

fixity coefficient in coIumn forrmda 2=7
;

stiffness factor (r)\F,

PLATES

~ effective pIate modulus for stresses beyond the elastic
range

K Poisson’s ratio
x half wave length of buckles in longitudinal direction
b width of pIate
t thickness of plate

D flexural stiffriessof plate per unit Iength
(MZ9)

~ effective flexural stifkm of plate for stresses beyond

the ektic range
(12:5,)
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a longitudinal compressive stress in plate

k=~~~u (always positive)
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bending moment
amplitude of sinusoidally distributed moment
restraint coefficient
deflection normal to plane of plate

SUBSCRIPTS
initiaI value
critical
effective
flange
web

DEFINITIONS

Member.—The word “member” is used in this report to
indicate either a bar or an infinitely long, flat, rect.anguhw
plate.

Jointi-A joint in a structure composed of plates, by
analogy to a joint in a structure of bars, is defined as the
entire length of the intersection line between two or more
joined plates

Stiffness and oarry-over faotort—If a bar is on unyielding
supports at each end, the moment at one end negessary to
produce a rotation of one-fourth radian at that end is calIed
the sti&wss of the bar and the ratio of the moment developed
at the far end to the moment applied at the near end’ is
called the carry-over factor of the bar.

In order to writs similar definitions of stiffness and carry-
over factor for plates, it is necessary to incIude a statement
showing how the moment is distributed along tho edges of
the plate. Tlm solution of the differential equation for the
critical compressive stress of an infinitely long plate with
given edge r=traints reveda that, when the plate buckIes,
the moments and tbc rotations at both edges of the plate
vary sinusoidally along the edges and are in phase with each
other. The ratio of moment per unit length at an-y point
along the edge to the rotation at that point is therefore
constant along the edge for a given wave hmgth. The
following definitioti of stiffness and carry-owr factor for
plates may therefore be written:

Stiffness-If an infinitely long flat plate is under
Iongitudimd compression with one unloaded edge on
Rn unyielding support, the ratio of moment per unit
length at any point along this unloaded edge to the
rotation in quarter-radians at that point when the
moment is distributed sinusoidally is called the stifhew
of the plwte.

Carry-over factofiThe ratio of the moment per
unit length developed at any point along the far un-
Ioaded edge tc. the applied moment per unit Iength at
the corresponding position alon~the near. mdoaded
edge is caHed the carry+ver factor of the pIate.

The foregoing definitions make it possible to use various
sti.tlnesscsand carry-over factors in a similar manner for
both bars and platea.

The symbols used to designate the stifTneasand carry+ver
factor for the different types of support and restraint at the
far end or edge are given in the following tab~c:

@IT’J-o;el
I

Oondltkm at farend orLdge

bars.
Iyv=-l Farcndor udge supported and srrbjcctcd to moment

aqnaiand oppodtr to that mpllcdatmar end or c@.

The cpmtitiea S, CX,W, C’11of this paper correspond
8’, C’, f?’, C“, respectively, of rcferenco 3.

The stiflncss of a‘bar computed according to the clrfinition
used herein is one-fouth that computed according h the
definition used by Cross (reference 1). In moment distrilm-
tion the relative, not the absolutr, values of stifhwsscs of
the members are of importance. The forrgoing definition
was selected so that the stiffness of u bnr of constant crow
section with no asiid load nnd fiml at llJU fur cnd would IIc
~[/L instmd of 4~1/L.

Sign convention.-A clockwise moment acting on lhc end
of a bar or at any station rdong tlw side cclgc of a plate is
positive and causes positlivc rotation at that und or station.
An external moment applied at. a joint is considorcd to act
on the joint.; a counterclockwise moment acting on a joint
is positive.

CRITERION FOR STABILITY

It is assumed that all mcmbws in n atructurc compoacd of
lmrs lic in the plane in which buckling occurs rind that [hc
joints of the st.ructurc arc held rigidly in spare but arc frcw
to rotate subjmt to the ekwtic restraint of tho connecting
members. Simihwly, in a structuro composed of plntcs} it is
nssume.dthtit the joints betwccu plntcs, or betwwm plntcs
and longitudinal restraining mrmbcm, remain in thrir
original ssraight lines but arc free to rotntc subject to the
elastic restraint of the connecting rncmhws.

In the discussion thut follows, either of two criterions for
stability may be used. For cnch criterion, the stifliwss and
cm-t-y-overfactor nrb functions of the nxial Iord in tlw lmr
or the longitudinal load in the phito. (See rrfwrnces 2, 3,
4, and 5.)

StifFnessoriterion for stability.-From a structure of many
members the section comprising mm joint shown in figure 1
is considered. Figure 1 may bu intwpro W m being either
a plan view of a structure composed of btirs or nn cnd view
of a“structum composed of long plntes. AI] cxternnl moment
of —1 is assumed to be applied at the joint i. If thv S[l’UC-

turc is composed of platea, tltis moment is the extermd
moment per unit Iength at the station under considcrntion.
Because4he angles between members at the joint nro ~wc-
served and the rotations of all members at the joint must
therefore be equal, the moment of 1 nddul to Imhtnco this
joint is distributed among the members in proportion to their
stiffnesse9, as follows:

flu*
— to member ijlXY<f

#
Sxfj,
— to member ij,
Z!Ytj
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arid so forth. The momentdistribut,ion analysis is no-iv
compIet.e as far as moments at joint i are concerned.

For stability, the moment in the members must be finite.
The stiflness criterion for stability is therefore

Zsrij>o (1)

The condition of neutral stability gives the critical buckling
Ioad for the structure and is obtained by setting.the stiffness
stab~~ty factor equal to zero, or

SY,,=o (2)

lrI the genertd case there is more than one criticaI buckling
Ioad; thus, satisfaction of equation (2) is hsticient for the
solution of a given stability probkm. Instead, the Iovwst
Ioad that satisfies equation (2) must be calculated and
compared with the Ioad for which the structure is designed.
Only if this lowest criticaI Imd is greater than the design
“load is the structure stable.

W“’-”””’
%).-

J3
FIGCUIEI.+?ectkn comprising one Jotnt.

According to the definition of stitlness, the moment dis-
tributed to any member must be the rotation of the joint
rmdtiphed by the stiffness of the member. Hence 0, the
rotation expressed in quarter-radians of joint i caused by
the extermd moment —1, is

(3)

Equation (3) will be used under the section “31ethod of
Jfnking Preliminw Estimate of the Criticrd Load.”

Series criterion for stabiIity.-In a structure of many
members, the section comprising two joints shown in figure 2
is considered. An externaI moment of —1 is assumed to
be applied at joint f. If the structure is composed of plates,

this moment is the external moment per unit length at the
station under consideration. By a momentdist.ribution
anaIyeis of reference 3, the totaI moment in members & at
joint i is

‘&* (l+r+?+d+ . . .)
m

vihere

(5)

For stability, the totaI moment in members z%must be
finite. The series criterion for stability is therefore

r< 1 (6)

The condition of neutmd stability gives the critical buckling
load for the structure and is obtained by setting

r= 1 (7)

The same considerateions that apply to the stiffness
criterion for stabiIity dso apply to the series criterion for
stability. The lowest load that. satislies the equation for
neutral stabiIity (ii this case, equation (7)) must be CL
redated and compared w-iththe load for which the structure
is designed. If this lowest criticaI Ioad is greater than the
design load, & structur:-~ stabIe.

According to the defimtlon of stifhwss, the totaI moment
in members ih at joint i must be the rotation of joint i
multiplied by the total stiilness of members z%. Hence 6, the
rotation in quarter-radians of joint i caused by the external
moment —1, is:

1 1
‘“S-U l–r “(8}

FormuIas (2) and (7) are both derived in reference 3.
‘iTM.her formula (2) or formula (7) is to be used will depend
upon the particular probIem. In casca in which the structure
is symmetrical about a joint, the e.qmssions concerned with
the stithms criterion usuaUy involve fewer calculations;
when the structure is sym.metricd about a member, the
formulas concerned with the series criterion offer certain
advantages.

Stiffness criterion for stabfity when structure is sym-
metrical about a member.—A modification of the stiffness
criterion in which the values of W are used is sometimes
conv-enient when the structure is symmetrical about a
member, as shown in figure 3. When this criterion is used,
opposing unit moments are applied at the two ends or edges
of the member about which the structure is symmetrical.

FIQUBE 2.-Section wmruklm two JoLrIt&
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FIOUEE 3.-Section of structuro s$mmctrlml about memiwr if.

The stiffnees stability factor of equation (2) for the joint ;
in figure 3 is then written:

mli=s~v<,+zsti=o (9)

An illustration of the use of this special application of the
stiffness criterion in a plate problem ie included in the
section” Examples.”

CARRY-OVERFACTORAND ST1FFNES!3

In order ta check the stability of a group of structural
members by use of the equations previously given, additional
equations for the carry-over factor an~.stiflucm are required.

The. member ij shown in figure 4, on an unyielding sup-
port at i mid elastically restrained at j by members jk is
considered. The members jk me also elastically restrained
at their far ends k, By a rnomont-distribution analysis
(reference 3) it follows that the.carry-over factor Cl,j is

nnd the stifluess S1tfis

Substitution of equation (10) in equation (1 l)~f&s

(lo)

(11)

(12)

For member ij, the limiting values of the carry-over
factor and of stiffness given by equations (10) and (12),
respectively, are obtained as follows: When the ffir end j is
pinned, there is no elastic restraint at j and M’lj,= O. For
this limiting condition, @ij= @Itf=O, and Sij=S1ij. W7hen
the far end j is fixed, there is complete restraint at j rmd
wjk= ~ . For this limiting condition, (?ij= C~jand SXt,=Sf,
where

SII,*
%= ~j

(13)

A similar equation, which expresses Svt, in terms of S1l~j
and C,t, can be obtained from.equation (11) as follows: If the
restraint at the far end is such that G!~tj=—1, there must be,

at the far end, a moment of the same magnitude but opposite

in direction to that applied at the near end. If, tlwrcfom,
@tj in equation (11) equals – 1, &tj bccomcs SIV*J,where

(14)

The expre=ions used for the computation of numcrica]
values of S, C, W} WI, and S~v for plates am given in the
appendix.

Up to this point, all the equations in this report.aro genmfd.
In nearly all ca9es encountered in practice, however, the
cross s~.tion and axial load do not vary along the length rJf
each member. For this special case, C~i= C’j~,5’~j=S,i, and
so forth. In practical problems tho numerid values for
these quantities are obtainul by use of tables. Such hddes
are given for bars in refcrenco 4, where the argument is
(.L/j),~f, and for plates in reference 5, wlwrc tlw arguments
are k and A/b.

FfQURE 4.-iMember nmralned by other mcrubcrs at far end.

METHOD OF MAKIhrG PRELIMINARY ESTIMATE
CRITICAL LOAD

OF THE

In order to determine the lowest critical lend for thu
structuxe, it is necessary to t.csteither cquntion (2) or oqua-
t.ion (7) for neutral stability for diffl’r[’nt assumed hmls.
The lowest load thut.satisfies either equation is the critical
load for the structure. If evacuation of tho stiflncss or thu
seriesstability factors has required lengthy computations tinci
if all the assumed loads for which thcac fwiom have been
evahlated arc less than thu 10WCSLeritictd load, as CVklL1llCC~

by the fact that zS’t, remains positive or thtit r remains lCSS
than unity, a method utilizing tho work alrrady done nmy
bc used to estimate tlw critical load, This cstinmtcd load may
then be used as a trial load in equation (2) or cquntion (7).

The method of estimating tho lowest critical load is Lmsmi
upon principles used in tlw untilysisof experimental olwr-
vationain problems of elastic sttibility (rcferemws 6 and 7).
Southwell (reference 6) mentioned that the unnvoidablo im-
perfections in practicaI structures provcnt the rcnlization of
the concept of a critical load at which ddlcctions Lwgin.
Instead, the initial deflections present in practical structures
steadily igrow with “increase in load andl according to the
usual theory, the defections become infinite as lbe crilical
load is approached.
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The general relation between Ioad and deflection for
probIeme of ehstic stability (reference 7) shows that if
(Y–Yl)K~-~1) iS plotted as ord~te agfit v–vi ss
abscissa, the curve obtained when P approaches P., is =en-
tiaIij a straight line of which the inverse slope is P,,—PI.
Here y is the deflection at load P in a member, yl and PI
are initial vaIu& of y and P, respectively, P= is the lowest
critical load, and

Pl<P<P,r

If simultaneous readings of Ioad and deflection recorded in
a test me plotted as described with any load P as the initial
reading, the vaIue of Pm— PI is readily obtained. The vahe
of Pm is then given by the relation

Pm= (P,r–PJ +P, (15)

The relation between Ioad and deflection can aIso be
applied to load and rotation of a joint- provided that there is
an initial rotation of the joints. The initial rotation is
obtained by the application of the external moment —1 at
some joint, after which the load on the structure is applied.
As the lowest criticrd load is approached, the rotations
become infinite.

If the distribution of the loads throughout the structure
does not change as the total load W increases, the axial OP
longitudinal load in each member is proportiomd to W.
‘If (@–8,)/(H-- WI) is plotted as ordinate against 8–01 as
abscissa, the curve obtained when n“ approaches W= is
eeeentitiy n straight line vijth inverse slope llr~~- Wll
where 6 is the rotation of a joint under the external moment
—1 when load W is on the structure, ff and WI are initial
values of 8 and W, respectively, IT., is the lowest critical
load, and

‘iThen simultaneous values of load and rotation are plotted
as described with WI as the initial load, the value of W=— WI
is easily obtained. The -due of lTa is then given by the
equation

m,,= (W=- W,) + W’, (16)

The procedure to be used in estimating the critical load
for a group of structural members is as folio-ivs:

1. For each of the loads lT assumed in the application of
one of the stabiIity criterions (equation (2) or equation (7))
to a joint, caIculate the rotation 6 of this joint by means of
equation (3) or equation (8).

2. Designate the loviest assumed vahe of W and the
wmresponding value of 8 as WI and 61,respectively.

3. Plot the curve of (0–&)/W- ITl) as ordinate against
8– 61 as abscisa and ~timate W., from the sIope of the
resulting line. If the curve obtained is not essentially a
straight Iine, succeseiveIy higher values of the assumed Ioads

Wshould be designated W, and the value of 17’~m-estimated.
The accuracy of the estimated value of W= is improved as
both W and W, approach W.,.

An example of the application of this method for predict-
ing the lowest critical load is given in reference 8.

As applied to a structure of plates, this method gives a ‘“
critical load for some particular Fake of the half wave
length h. The vahxe of Tin=that satisfies equation (2) or
equation (7) and is a minimum with respect to h must
finally be found as in the example, given subsequently
herein, in which the use of this method of estimating the
critical load for a given wave length was not required.

DISCUSSION OF METHODS

Each of the two equations for neutral stabihty contains
the stiffness of certain members elastically restrained at their
far ends or edges by other members. These other members
may also be elastically restrained at their far ends or edges
by still other members, and so on. By successive applica-
tion of equation (12) the restraining effect of alI the members
in the structure can be considered.

In practical calculations for structures composed of bars,
modi.tlcation of the actuaI structure by the introduction of
pins at certain joints is usually necessary. It has sometimes
been the custom to consider only one member elastically
restrained at the encls by the adjacent. members, which are
assumed to be pinned at the far ends. The calculation of
Tf”mby use of small groups of members in this manner i~
quite inadequate. Treatment of much larger groups of
members in one calculation is neceesary if a reasonably
accurate due of W= is to be obtained.

If the stresses in any of the members of a structure are
beyond the eIastic range, the reduction of the modulus of
elasticity at these stresses must rdso be considered. Dis-
cussions of this reduced modulus for structures composed of
bars are given in references 3 and 8. References 9 and 10
discuss the reduced moduhs of elasticity for platea at high
stresses.

EXAMPLES

Structure composed of bars.-The example of a structure
composed of bars presented herein is identical with that
given in reference 3; for the solution of the problem, the
tables of reference 3, rather than the more extensive tables
of reference 4, were used.

A continuous member of 1025 steel is to be designed to
carry the loack shown in figure 5. For simplicity, the same
cross section -willbe used in all spans.

/lXid 10Gd h ~: Z f&7Si~; C,c@aressfin7
o 9940 C’ t?6/OT 994c7C 86/0 T 9940 c O

[
L A A A A
Y z a : c : e )!”

1--160 ~ --..460-1
FIGIX=Z 5.—IlInstratim b8r probIem.

—
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The usual column formulas for 1025-steel tubes are:

For ~<124,

For ~>124,

(17)

“(18)

It is desired that L/pbo less than 124. Equation (17) there-
fore is used and, on the assumption that c=2, a tube of the
following dimensions is selected as a trial design for com-
pression members m, fit, and de.

Dfametir, d.----------------------—-------–------in--- 1.625
Wallthickness,t---. ------ .-------. ----- .---------in--- O.065
Area,A---- -–---------------------------------q in--- O.3186
Momentof inertia,I-------------------------------h.4-- O.09707

According to the problem, this tube is umd as a continuous
member from y to j (fig. 5).

In order to check the stability of the tube selected in the
trial design, the critical buckling, load wjll be calculated and
compared with the loads given in figure 5. The axial load
in the tension spans is assumed to be ilways 8610/9940 or
0.866 times the axial load in the compression spans. This
assumption co~orms to the condition that tlm forces @ all
members increase in the same ratio as the load on the
structure increases.

Both the dimensions and the loading of the member shown
in tigure 5 are symmetrical about span bc. It is therefore
convenient to determine the critical buckling load by use of
the series criterion for stability. B the unit external moment
to be applied is a~ joint b, the series stability factor is given
by equation (6} with the sunynation signs omitted, If the
symmetry about span bc is considered, the series stability
factor becomes

(s&)’

‘:(&+fl,,)2 (19)

where

In the equation for fTti it is assumed that the ends at y andf
are pinned.

The detailed procedure of calculating the critical buckling
load is as follows:

1. Assume a series of values for the axial load in one of
the members. In order that the values of load be reasonable,
a compression member should always be selected and the
values of the axial load for this member computed from the
column formula by use of a series of values of c. In this
problem, compression member bc is selected and the column
formula is equation (17).

2. For each assumed axial load in the sclcctcd member,

calculate the corresponding axial load in every other member.

ln this problem the axial load in rdl compression mcml.wrs

is the same and the axial load in the tension members is

0.866 ties the axial load in the compression mcmlms.
3. For each load in each of the members, calculotc P/A,

~, and (~/j).f~. In thisproblem, ~ is obtainrd from equation
(17) by methods outlined in reference 3, or

()1 p 36000–;
E=p ~ . ..—-—

1172

4. For each load in cnch of the members, dctcrrninc tlw
value of the terms required to evaluate cquation (19), by use
of the tables of reference 3 or 4.

5. The assumed load that gives r= 1 is the criticnl burklillg
load.

The results of this procedure M applied to the proldcm of
figure 5 me given in table I; the values of c in the first column
are given for reference only and, as stated in paragraph 1 of
the foregoing procedure, were so assumtitlthat. n series of
reasonable values for the ax;al loml P in the compression
member bc co.uId be obtained. In the last column of tti~JhJ1

fire given the valurs of r correspond ng to the nssumcd
values of c. As the valuc of c inert’ascsfrom 1A to 2.6, the,
value of r increases from 0.133 to 1.63. If the dnta of table I
are plotted, it is found that when r= 1 the Iowcst critiml
buckling loads for the trial design tire

m, bc, and de---------------- 10,260 compression
ab and cd------------------- 8,890 tension

These critical loads arc grmtcr than the loads to which the
respective members are subjected (see fig. 5). The tube
selected for the trial design is thcrefom stable and thr margin
of safety for tlm system is

10260 ;_8890—.
9940 –~–l=o.03

A s~gle margin of safety is obtained for the whole systwn
regardlessof which member is used for its calculation bccausc,
when the critiral 10M1is reached, all members deflect.

More than one type of instability is possible, thcorctica]ly;
therefore, as the loads F’ increase, there is more thrin one
value “ofP for which r=l. ‘ (See table I.) For rach type of
instability there is a corresponding critical loud. In {Imign,
however, the lowest critiml load should bc cahmhitcd and
compared with the loads given in the problcm.

Tal.deI shows further that, for values of c bet.wcen 1A and
1.5, the value of S’1~,changcn from positivc to ncgal ivc.
According to the stiffncss criterion for stability, this chtingu
of sign means that members de and ej, considered alonoj havo
changed from stable to unstable, It is also noted thnt SI@
changes from positive to negative for values of c between 2.6
and 2.7; members cd, de, and ej, considered alone, htive there-
fore changed from stable to unstable, hut at a much higher
load. The change from stable to unstable for all members
occurs for values of c between 2.5 and 2.6 when r= 1.
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Structure composed of pIates,—The critical compressive
stress for local instabdity of a 24S–T ahunimm-dloy
Z-section COIIUUIIwith the cross-sectional dimensions shown

in figure 6 is to be determined.
It is convenient in symmetrical plate problems of this

type to use the modification of the stiffness criterion for
stabdity previously discussed. If opposing unit extermd
moments are applied at the joints between the web and
the flanges, the stifhmss stabdity criterion, as gi~en by
equation (9), is

zFf,=WI.+Fvw=o (20)

where the subscripts F and IT refer to the flange and the
web, respectively.

c—b==l ~

~ 7— tw.o.05

FIGCEX6.—IUustmtlve plate probkm.

The tables of reference 5 give the values of S1l and W
in the dimensionless form SII/(~/b) and fTv/(~/fJ) rather
than directly. It is therefore desirable to write equation
(20) in the form

‘Fi’=%?’+itmw=o
(9If this equation is divided by ~ , it becomes

$=u=t%%e)(z)’”
Because ~W/~~(tw/t.)a, the stabihty criterion may be
written in terms of the mod&d stiflneas stabiIity factor U,
as

‘-?ix%(%)(%)=o‘2’)
I

The detaiIed procedure of calculating the critical com-
pressive stress is as follows:

1. Compute the ratios t#r, b~/fiW,and &/t~.
2. Assume a value of k/b~.
3. Compute X/br from the equation

4. &sume a series of values of kr and, for each value of
h-r,compute kw from the equation

The indicated procedure is adopted as being somewhat more
convenient than assumption of the stress and computation
of the corresponding values of kFand kr. It is permissible

to compute & from the given equation even though the

stress is beyond the elastic range, because the stress an~

thus, by assumption, the effective plate modulus are the

same in the web and the flange.
51 Evaluate the modified stfinw stability factor U

from equation (21) and the tables of reference 5.
6. Plot U against kF or & and note the wdue of k for

which U is equal to zero.
7. Repeat steps 2 to 6, assuming different values of hjbr.
8. Plot values of kp for U=O against k/& (or k~ for

U=O against X/b”) to determine the minimum value of
k~ (or iiw).

9. With this minimum due of k, e&luate the critical
stress from the formula (see detlnition of k),

which may be written, for the -web,

(22)

(23)

‘l%& value of am -wilI be the same regardless of whether
equation (22) or (23) is used.

The results of this procedure as appkd to the problem
of figure 6 are given in table II. The values of kw for Z7=0
in the last column of table II were determined according
to step 6. H these dues of kw are plotted against A/bW
(step 8), the minimum value of kw is found to be about 2.9.
(See Q 7.) The critical compressive stressfor local buckling
of the section shown in figure 6 is then, from equation (22),

2.9X9.87 X10.6XI07
‘m= 12X0.91,X (40]~ =17,400 pounds per square inch

This method provides a relatively simple means of predict-
ing the critical-stress values for cohunna of Z-section and
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FIGURE 7,—Plot of kwagainstWWforPlstemblem

other simple cross sections, such as I-, channel, and rectan-
gular-tqbe sections, Charts giving the values of k deter-
mined by this method which were prepared for wide rangea
of the dimension ratios are presented in reference 11 for
culumns of 1-, Z-, channel, and rectangular-tube section.

An alternate method of solution for problems of this type
makes use of the charts of references 9 d 10 and the in.blcs
of reference 5. An assumption is made as to whrthcr thu
flange or the web will be primarily responsible for instability,
If the flange is expected to be primarily responsible, the wduc
of Ww for theweb isidetermined from the tdk of rcfcrcncc 5,
This value is then used in computing the rcstrain~ coctTi-
cient e (reference 9 or 10), and the viduc of k is found from
figure 3“of reference 9. Because it is necessary to assume a
value of k and A/b in ordm to dctcrminc ~lvJV,thr XIN~lLO~

w’ill obviously involve a trial-and-error pmccdurc. Furt.hcr-
more, if repeated calculations show that Slvw is ncgaiivc, the
assumption that the flange would bo primarily responsible
for instability is incorrect. In this case, it will b~ ncceseary to
evaluate S% and to determinek from figure 3 of r~fmwwc 10.
A detailed example of the application of this method is giwm
in reference 11.

LANGLEY XI EMORIAL AERONAUTICAL LABORATORY,

NAmONAL ADVISORY COkf3iITTEE FOR AERON.4UTIC’J3,

LANGLEY FIELD, VA., July 15, 1943.



DERIVATION

PLATE UNDER COMPEE3SION

In order to appiy the method of moment.

APPENDIX

OF STD?FNESSESAND CARItY-(3VERFACTORS

distribution in
any form, the vahws of stifhssea and carry-over factors are

required for the members in question. Formulas for the

evaluation of these quantities for bars vvere developed in

reference 3. This appendiT gives the corresponding deriva-

tion of the formulas for plates; the sign convention used, as

distinguished from that given in the section on “Definitions,”

corresponds to that of reference 12, in vrhich deflections w are

positive downward and a moment is positive if it produces

compression in the upper fibers.

General deflection surface of a plate buckled under com-

pression.—Before the values of stitlness and carry-over factor

for flat plates under -rarious conditions of edge restraint may
be computed, the deflection surface of a flat plate buckled
under a compressive load with a moment applied along one
unloaded edge must be described.

An infinitely long flat plate under ]ongitudimd comprtion
is shown in &ure 8 with coordinate axes. For equilibrium of
an infinitesimal element of the plate, the following equation
must be satisfied (reference 12, p. 324):

&w a%) a%) z-% NW
a+’&qy’+5#~ -@=Q (Al)

On the assumption that the plate is infinitely long in the
direction of x, the conditions at the ends do not matter; the
scktion of equation (Al) is therefore taken in the form

The unknown function ~(g) may be determined by sub-
stituting the expression for w into equation (Al). It is
found that the function~ must satisfy the equation

(A3)

Equation (A3) is an ordinary diflerentid equation of the

fourth order, the solution of which is

j=C, COSh~+h Sinh ~+ti COS~+C, Si.U~ (A4)

where cl, G, Cz, and CLme arbitrary constants and

“’”AI=
.

FIGGEE S.-InSnitely long ftat @te under longitudinal cempmsskt.

The deflection surface of the plate is riow found by@b-
st.ituting this result for f in equation (A2):

In this solution, feur conditions may be imposed along the
unloaded edges to fix the four constants. One of the four
conditions wiIl ahvays specify the presence of a moment

iLIOCOS~ along the near edge, and another will speeify tit

the deflection w along this edge is zero. The remaining two
conditions wiIl be m.ried to suit the conditions at the far
edge of the plate of which the stiffness is bejng computed.

05
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Stiffness of a plate with far edge fixed.-Figure 9 shows
a flat rectangular plate under compression with a moment M

applied along one edge at y= —$ and with complete restraint

against rotation along the paralleledge at y=~” The stiflnessS

of the plate is defined as

~_ M()6 (A6)
v.+

where (6) is the rotation of the edge at y———~ expressed
9-+

in-quarter-radians.
The general expression (A5) for th deflection of the plate

must be specialized to the case of figure 9 in which the
boundary conditions are:

(@V-*; =0.. (A7)

)–D($+lgg =M=MfJ Cosy (A8)
u-+

()%U.;=o (A9)

FIG~E 9.-P1Etewith momentaIIPHodatIImrmke,fmcdreW.

After determination of the arbitrary constants in equa-
tion (A6) by use of these boundary conditions, tho defhction
surface for the case of figure 9 is found to be

L

From this deflection surface there is obtained

1
(0_;=4 (~)y._$=* D(dT@) 1

~+
1

a:tanh ~+~ tan ~ cccoth &#I cot ~.-

where @is:exprewed in quarter-radians. Substitution in equation (A6) gives

Cos y (Ale)

(All)

-(A12)

Carry-over factor of a plate with far edge fixed.-The where w is the deflection of the plate of figure 9, given by
carry-over ‘fact@ h defined as the ratio of the moment de- equation (Alo).

. ...:,.., If the iqdicated differentiation of equation (A1O) is made
veloped at “tik”far edge y=; (fig, 9) to the moment at the and the result substituted in equation (A 13), it is found that
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The moment at the near edge is, from equation (A8),

(A15)

By definition, the carry-ova’ factor is

(A16)

with the si=m of the moment at the far edge changed to
conform to the sign convention given in the section
“Definitions.”

*r

FIGLTiE 10.–Plate with moment appl!ed at near edge, far edSCIMnge&

Stifhess of a plate with its far edge hinged.-Figure 10
shows a flat rectangular plate under compression with the

two edges y=+! hinged to supports. ~ moment M is

applied to the edge y= —~~and the stiffness of the plate is

deEned as

()S1= ;:
b,--~ (A17)

where (8) b is the rotation of the edge y= —~ espresaed in
r-y

quarter-radians. The general expression (A5) will again be
used to compute 6 and the boundary conditions will be:

(W),=*$=O (A18)

– VW
< )

TX— ~+P g =M=lifi.1 Cos~ . (A19)
1-—;

@20)

By use of these boundary conditions, the arbitrary con-
stants in equation (A5) may be computed, and it is found
that the deflection surface for the case of @re 10 is

From this deflection surface, the magnitude of the rota-

tion @along the edge y= –~ is found to be

()(6),.-:=’4 ~ ,=--g

ZM-b ‘=—
D(cF+@) (

a tanh ~+ B tan ~+a coth ~
)

/3 cot $

(A22)

where 8 is expressed in quarter-ratilans. upon substitution

of this expression for o in equation (il17), it is found that

According to the boundary condition given in equation

(A20), there is no moment at the edge y=; Hence, the

carry-ov= factor IW with the far edge hinged is zero.
. Stiffness of a plate with far edge free.-Figure 11 shows

a flat rectangular plate under compression with one edge
V=ZI free and a moment .liapplied to the paraI1el edge
g=O. The stiffness of the p!ate is defined as

(A24)

where (19)U.0is the rotation of the plate along the edge y=O
and is expressed in quarter-radians.

The general e.xpr-ion (A5) is used to compute the
rotation 6. The boundary conditions for a plate with far

edge free are:

(W),.,=o (A25)

(A27)
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Upon determination of the arbitrary constants in equation (A6) by use of these boundary conditions, the ddlect ion
surface for the case of figure 11 is found to be

~=m213 cosh a cos #—nzg sinh a sin ~+mn~
m?~ sad a cos B— n*a cosh a sin ~

From the deflection surface, the rotation aIong the edge y=O is found to be

(“~-’=’(%),.o=[m:y,,l

2c4?mn+a@(mz+n.2) cosb a cos /3+ (m2&– nzd) sinh a sin j9
m2flsmh a cos /3-ns ~ cosh a em @ (A30)

whore 6 is exprmsed in quarter-radians. upon substitution of this expression ford in equation (~24), the stiflncss is found to bo

The trigonometric and hyperbolic functions have been converted to~the half angle in order that the samo functions cnn bc
used as in the calculation of the other stiffnaes.

According to the boundary condition of equation (A27),
there is no moment along the edge y=b. The carry-over
factor (P1 is thus zero for the far edge free.

Stiffness of a plate with equal and “opposite moments
applied along the unloaded edges.—l?igure 12 shows a flat
rectangular plate under compression, @th equal and opposite

moments applied to the edges y= 4C:J The stithw.s of the

*X

FIGWEE11.—plste with moment aPplIr4 at ne2r edge, far edge free.

plate is defined as

(A32)

where (6) b iswe rotation along the c!dgcy= —~ expressedu=-~
in quarter-radians.

t.r

dM
*.Y - -—- —-+-—- ~

Y’

/ t

FIQUF.E 12.-P1ate with momentapplied ot near edge, ormnl and oppoeke moment
at far edge.



PRINCIPLES OF 3fOMliWT DISTRIBUTION APPLIED TO STABILI’IT OF STRIK?TURES COMPOSED OF BARS OR PLATES 69

The boundary conditions for this case are:

(wjr=+$=o (A33)

-a’wa’w )L-)(W+PS~=*;=–M= –.MfJCos; (A34)
.

According to the sign convention of the appendix, the mo-
ments at the two edges have the same sign although they
act in opposite directions. By means of these boundary
conditions, the arbitrary constants in equation (&i) may
be computed, and the defkction surface for the case of
figure 12 is found to be

From this deflection surface, the rotation O along the edge

Y=—~ is found to be

which is mpr=ed in quarter-radians. Substitution of this
expression for 19in equation (A32) gives the stiflness of the
plate,

Because the moment at y =: is equal and opposite to that

b
at.y=—q) the carry~wr factor (TVis – 1 in accordance -with

the sign convention given in the section “Definitions.”

PLATE UNDES TJHS1ON

If the direction of the applied longgtudinsl force on the

.-

plate of figure 8 is reversed, the plate will be under tension
and equation (AI) will become

The forrmd solution of this equation is precisely the same as
equation (A5), except that the parameters a and P are now
ddned by

rCY=r,:J;+i,~ (A39)

(A40)

Because the stiffnesses S, W, W1, and W, and tho carry-
over factor C, as calculated for a plate under compression,
are based directIy upon equation (A5), it follows that the
expression deri-red for each one of these quantities is still
correct when the plate is under tension, protided a and B
are now given by equations (A39) and (A40).

The new expressions for a and @ are complex and may be
vmitten in the form

;=A+B (A41)

(&E)

where

(A43)

:=B+i.A

~=; \L:/@’+~+;

B=;,KJJ(H+’-: (A44)
.

The expressions (A41) and (A42) for sand pare substituted
into equations (A12) for S, equation (A23) for S’[l, equation
(A31) for S“, equation (A37) for Sm, and equation (A16)
for C. The results of the substitution show that, for a plate
in tension,

~=~ All A sin 4B-B sinh -&i
b ~ Xi?Sin’2B-B’ ~- 2A (A45)

~I=~m(cosh2A+ COS ~) (ainh’ii+ sin’ ~)

b B sinh 4A–A Sill@ (A46)

A(m’– 16A’B’+8mB’) sin 4B-B(m’– 16A’B’-8mA’) sinh 4A
S“’=FD ~(m–M’)z-A’(~+

{
– (A2+lP) (m’– 16A2P$cosh’2A COS? 2B+sjnh’ 2A sin’ 2B]

+[A’(m+w)’–&(m–ti’) q(a’ 2A CC@ 2B+CO*’ 2.4 sin’2B)

(A47)

(A48)
These formulas permit tables of stiffnesses and carry-over

factors to be prepared for a plate in teneion similar to the

~=A Cosh2A sin 2B–B Sillh2A Cos2B tables of reference 5 for a plate in compression. Such tables,
(A49) however, have not been prepared, and in ueu of them,B cosh 2A SiUh ~ii-ii SiU 2B COS 2B

where

()

formulas (A45) to (A49) may be used directly if the need
m=4 (A2—-B2)_ ~b 2P~ (A50)

should arise.
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